
Normal modes in three 
dimensions
2ND NOVEMBER 2020

1



Waves equation in 3 dimensions
•Recall, the wave equation in 3 dimensions can be written as

•The solution of the equation can be found from the method of separation of variables.

•The general solution, i.e., the wave function, is found to be
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Standing waves in rectangular enclosure
•Consider a rectangular enclosure as illustrated in the figure, l1, l2 and l3

are lengths of the sides of the rectangular enclosure.

•The wave function describing the standing waves inside the enclosure 
have to satisfy the following boundary conditions.
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A particular wave function within the 
rectangular enclosure
•By applying the first boundary condition,  = 0 @ x = y = z = 0 at all times, the 
wave function becomes

•Likewise, the application of the second boundary condition,  = 0 @ x = l1, y = l2

and  z = l3 at all times, leads to the particular wave function

• where n1, n2 and n3 are integers.
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Normal mode frequency of standing 
wave in a rectangular enclosure

•Substituting the particular wave function into the 3 D wave equation, we then obtain

•This leads to 

•Or 

•Finally, the normal mode frequency ;
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The allowed standing wave 

must have wave vectors 

that satisfy this condition.



Normal mode frequency
•Recall the normal mode frequency from the previous slide,

•The labels; i.e., n1n2n3, need not all have the same value, but can be chosen quite 
independently of each other. Note that, setting any one of them equal to zero 
causes the wave function  to vanish.

•Likewise, the wave function can be expressed with the label n1n2n3 as follows
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Degenerate standing waves
•Recall the relationship of the wave vectors k, k1, k2 and k3, 

•This implies that standing waves with different composite wave vectors can have 
the same wave vector k, normal mode frequency and subsequently energy. Those 
standing wave are called “degenerate  waves functions”.

•For example, if l2 = 2l1 for any value of n3, 22n3
and 14n3

are degenerate wave 
functions.
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No. of normal mode frequency in a 
rectangular enclosure in k space

•No. of normal mode frequency, representing the no. of standing waves in the rectangular 
closure, can be determined from either wave vector space k or frequency space .

•If we start the analysis with the wave vector relation,

•The composite components of the wave vector k

can form three perpendicular axes.

•Also, it is noted that the maximum magnitude of the wave vector k

has to be within a sphere of radius k.

8

22 2

2 2 2 2 31 2
1 2 3

1 2 3

nn n
k k k k

l l l

      
   = + + = + +              

k2

k1

k3

Wave vector space k

k



The lowest normal mode
•Consider the lowest normal mode having labels of n1n2n3 = 111, the 
magnitude of the wave vector k becomes

•The end point of the lowest normal mode wave vector is at the 
corner of a rectangular cell having lengths  /l1, /l2, /l3 along k1, k2
and k3, respectively, with a volume 3/l1l2l3 .

•There are as many cells as points since each cell has eight points at 
its corners and each point serves as a corner to eight cells.

•Therefore, this suggests that the number of modes can be determined 
from the ratio of the spherical volume to the volume of a cell.

•However, only one octant of the sphere gives a unique set of normal 
mode.

9http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/rayj.html
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The number of normal modes

•The number of normal modes can be calculated from 
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•The wave vector space can be transformed into the frequency  space as follows

•Likewise, the frequency space is composed of composite

frequency components 1, 2 and 3 as shown in the  figure.

•The maximum normal mode frequency lies within the sphere

of radius .
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The lowest normal mode frequency
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How many normal modes can exist in 
the frequency range  to  + d?
The total normal mode corresponds to the number of possible points (n1, n2, n3) lying in 
the positive octant between two concentric sphere of radii  and  + d.

•The total number of possible points or cell will be

•Note that the mode density is given by                      in the frequency range  to  + d

per unit volume of enclosure.  
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Review of the specific heat of a solid
•By definition, the specific heat is the amount of 
heat energy that must be supplied to a mole of 
solid to raise its temperature by one degree.

•The amount of head also increases the internal 
energy of the solid.

•Therefore, the variation of the internal energy E 
with the temperature T is the molar specific heat 
capacity of the solid and can be expressed as 

c =
𝜕𝐸

𝜕𝑇
.

•This suggests that the molar specific heat 
capacity is not constant and varied with the 
temperature.

14http://www.applet-magic.com/heatcap.htm



Application of mode density :
Debye theory of specific heat of a solid

•Debye considered the thermal vibrations of atoms in a solid lattice correspond to the 
internal energy.

•To determine the energy, first of all the possible mode density in the frequency interval 
 to  + d has to be determined.

•In Debye’s model, each atom was allowed two transverse vibrations (perpendicular 
planes of polarization) and one longitudinal vibration.

•This gives the number of possible modes to be
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• Once the mode density in the frequency range   to  + d and an average energy (from Planck’s 

law) are known. The total energy for a solid volume VA is then

• Where  the average energy per oscillator  is given by  
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• The total energy per one mole of atoms of the solid over all permitted frequencies is then

• Where m is the maximum frequency of the oscillations.

• The total number of oscillation modes for one mole of the solid of volume VA can be written in terms 

of the maximum frequency of the oscillations as follows:
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Debye’s approximation (cont.)
•Rearrange the total number of oscillation modes from the previous slide

•We then end up with       𝜈𝑚 =
9𝑁

4𝜋𝑉𝐴
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which represents the maximum 

frequency of the oscillation mode which can propagate in solid.
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• The last equation in the previous slide gives a new form of EA as

• The molar specific heat of the substance at constant volume can be determine 

once the variation of EA with temperature has been found.

• In general, the specific heat is calculated from

• The specific heat  of  aluminum calculated by this model is compared with 

experiment results shown in the next slide.
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Calculation of specific heat
•Recall the total energy of normal oscillating modes,

•Let  
ℎ𝜈

𝑘𝑇
= 𝑥 and 

ℎ𝜈
𝑚

𝑘𝑇
= 𝑥𝑚 .

•The total energy becomes    𝐸𝐴 = 9𝑁
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High and Low temperature Limits
•The integral in the previous slide can be assessed in the high and low limits as follows.

•High temperature limit : T >> D, 

•For very high temperatures, x is small and we can make the approximation : ex  1 + x.

•The integral becomes

•

• So that the specific heat at high temperature limit :  cv =
𝜕𝐸

𝜕𝑇
= 3𝑅

•

22

𝐸𝐴 = 9𝑁kT
𝑇

𝜃𝐷

3

න

0

Τ𝜃𝐷 𝑇
𝑥3𝑑𝑥

𝑒𝑥 − 1

=
9𝑁kT

3

𝑇

𝜃𝐷

3
𝜃𝐷

𝑇

3

= 3NkT  =  3RT



High and Low temperature Limits 
(cont.)
•Low temperature limit : T >> D ,

•For very low temperature, the upper limit is infinity, this gives 0׬
∞
𝑥3

𝑑𝑥

𝑒𝑥−1
=

𝜋4

15
.

•The total energy becomes

•This shows that the energy f the solid becomes proportional to T4.

•Now the specific heat is   𝑐𝑣 =
12
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•The Cv varies as T3 and this is the famous Debye’s T3 law. There is excellent agreement between 
theory and the experiments performed on a large number of element solids as well as compounds.
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Homework #10
Problem 9.11, 9.12
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