Normal modes In three
dimensions
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Waves equation in 3 dimensions

Recall, the wave equation in 3 dimensions can be written as
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*The solution of the equation can be found from the method of separation of variables.

*The general solution, i.e., the wave function, is found to be
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Standing waves In rectangular enclosure

Consider a rectangular enclosure as illustrated in the figure, I, I, and |,
are lengths of the sides of the rectangular enclosure.

(0,0,1,) / *The wave function describing the standing waves inside the enclosure
i have to satisfy the following boundary conditions.
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A particular wave function within the
rectangular enclosure

By applying the first boundary condition, $ =0 @ x =y =z = 0 at all times, the
wave function becomes

¢ = Asink;xsink,ysinkszsin kct

-Likewise, the application of the second boundary condition,¢ =0 @ x =1,y =1,
and z = l;at all times, leads to the particular wave function
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- where n,, n, and n, are integers.



Normal mode frequency of standing
wave In a rectangular enclosure

*Substituting the particular wave function into the 3 D wave equation, we then obtain
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*This leads to | 7z 2 7t 2 Nyt 2 , The allowed standing wave
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Normal mode frequency

*Recall the normal mode frequency from the previous slide,
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*The labels; 1.e., n;n,n,, need not all have the same value, but can be chosen quite
Independently of each other. Note that, setting any one of them equal to zero
causes the wave function ¢ to vanish.

-Likewise, the wave function can be expressed with the label n;n,n, as follows
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Degenerate standing waves

Recall the relationship of the wave vectors k, k;, k, and K,
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*This implies that standing waves with different composite wave vectors can have
the same wave vector k, normal mode frequency and subsequently energy. Those
standing wave are called “degenerate waves functions”.

For example, if I, = 2l, for any value of n,, aon, and P14, ATE degenerate wave
functions.



No. of normal mode frequency in a
rectangular enclosure In k space

*No. of normal mode frequency, representing the no. of standing waves in the rectangular
closure, can be determined from either wave vector space k or frequenT space v.
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: k
can form three perpendicular axes. A

°If we start the analysis with the wave vector relation, k= [kf +k5 + kg] =

*The composite components of the wave vector k

Also, it Is noted that the maximum magnitude of the wave vector k

has to be within a sphere of radius k.
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The lowest normal mode

each apparent point | °Consider the lowest normal mode having labels of n,n,n; = 111, the
corresponds to a magnitude of the wave vector k becomes

K possible normal 2 2 2 %
? | mode. c=|[Z] +[Z] 47
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*The end point of the lowest normal mode wave vector is at the
corner of a rectangular cell having lengths =/l;, n/l,, n/l; along ki, k,
and ks, respectively, with a volume =3/1,1,15 .

*There are as many cells as points since each cell has eight points at
Its corners and each point serves as a corner to eight cells.

P —— *Therefore, this suggests that the number of modes can be determined
K, from the ratio of the spherical volume to the volume of a cell.

*However, only one octant of the sphere gives a unique set of normal
Wave vector space K mode.



The number of normal modes

“The number of normal modes can be calculated from  No. of modes = ~ SPherical volume

8 volume of a cell

Physical space resonator Wave vector space

k.




No. of normal mode frequency In a
rectangular enclosure in vspace

*The wave vector space can be transformed into the frequency v space as follows
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Likewise, the frequency space is composed of composite
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frequency components v,, v, and v, as shown in the figure. Vs,

*The maximum normal mode frequency lies within the sphere
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The lowest normal mode frequency
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Figure 9.7 Lattice of rectangular cells in frequency space. The length of the vector joining the
origin to any cell corner is the value of the frequency of an allowed normal mode. The vector
direction gives the propagation direction of that particular mode



How many normal modes can exist In
the frequency range vto v + dv?

The total normal mode corresponds to the number of possible points (n,, n,, n;) lying in
the positive octant between two concentric sphere of radii v and v + dv.

*The total number of possible points or cell will be This came from the
i 5 r= == volume of the
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*Note that the mode density is given by In the frequency range v to v + dv

per unit volume of enclosure.



Review of the specific heat of a solid

By definition, the specific heat is the amount of
heat energy that must be supplied to a mole of
solid to raise its temperature by one degree.

*The amount of head also increases the internal
energy of the solid.

*Therefore, the variation of the internal energy E
with the temperature T is the molar specific heat

capacity of the solid and can be expressed as
OE

C=—.
oT
*This suggests that the molar specific heat
capacity is not constant and varied with the

temperature.
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Application of mode density :
Debye theory of specific heat of a solid

*Debye considered the thermal vibrations of atoms in a solid lattice correspond to the
Internal energy.

*To determine the energy, first of all the possible mode density in the frequency interval
v 1o v + dv has to be determined.

°In Debye’s model, each atom was allowed two transverse vibrations (perpendicular
planes of polarization) and one longitudinal vibration.

*This gives the number of possible modes to be
dn:47zv2dv( 2 + L )
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C; and C, are the transverse and longitudinal velocities.



Debye’s approximation

« Once the mode density in the frequency range v to v + dv and an average energy (from Planck’s
law) are known. The total energy for a solid volume V, is then
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« Where the average energy per oscillator is given by




Debye’s approximation (cont.)

« The total energy per one mole of atoms of the solid over all permitted frequencies is then
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* Where v, is the maximum frequency of the oscillations.
 The total number of oscillation modes for one mole of the solid of volume V, can be written in terms
of the maximum frequency of the oscillations as follows:

Vm
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* In 1 mole, there are N atoms (= Avogrado’s number)
 Each atom has 3 allowed oscillation modes.




Debye’s approximation (cont.)

*Rearrange the total number of oscillation modes from the previous slide

Idn:BN =4ﬂVA(%+iij2dv=47;VA[ 2 + . Jvr?;,
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‘We thenend up with v, = =T = which represents the maximum
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frequency of the oscillation mode which can propagate in solid.



Debye’s approximation (cont.)

 The last equation in the previous slide gives a new form of E, as
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« The molar specific heat of the substance at constant volume can be determine
once the variation of E, with temperature has been found.

* In general, the specific heat Is calculated from ¢, = (a;—TAj

« The specific heat of aluminum calculated by this model is compared with
experiment results shown in the next slide.
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Solid curve-
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Figure 9.9 Debye theory of specific heat of solids. Experimental values versus theoretical curve for
aluminium




Calculation of specific heat

Recall the total energy of normal oscillating modes,
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High and Low temperature Limits

*The integral in the previous slide can be assessed in the high and low limits as follows.

*High temperature limit : T >> 0,
For very high temperatures, x is small and we can make the approximation : e*~ 1 + X.

*The integral becomes
3 6p/T
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High and Low temperature Limits
(cont.)

*Low temperature limit: T >> 0,

3 dx 7'[4

xX—1 15"

For very low temperature, the upper limit is infinity, this glvesf X

*The total energy becomes

3 3
Op/T x3dx n_4 _E 4
E, = 9NkT( D) fo 1 —9NkT( D) T 5 NkT( D)

*This shows that the energy f the solid becomes proportional to T4.

3 3
-Now the specific heatis ¢, = (1—52) T*NkT (91) = 1940( ) .
D D

*The C, varies as T2 and this is the famous Debye’s T3 law. There is excellent agreement between
theory and the experiments performed on a large number of element solids as well as compounds.
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The low-temperature heat capacity of solid argon compared with
the Debye T2 prediction with ©p = 92 K (solid line).




Debye theory works well for a wide range of materials.
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Heat capacity vs. reduced temperature for a number of materials.




Homework #10

Problem 9.11, 9.12




